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Abstract

Detailed calculations are carried out demonstrating conductance quantization
with a 2D quantum point contact (QPC). The QPC is defined as a gap of
width a in a diaphragm located perpendicularly in a narrow stripe of width
Lx . The stripe is considered as a container of an ideal gas of electrons at zero
temperature. Emphasis is put on treating the stripe as a quantum-mechanical
waveguide of the electrons. For simplicity, collisions of the electrons inside
the stripe are neglected. The author focuses attention on the dependence of
the conductance of the QPC on the variable u = akF. (h̄kF is the Fermi
momentum.) The plot of this dependence exhibits steps manifesting two kinds
of singular points. The frontal edge of each conductance step represents a
singularity of the type ∼1/

√
u − uμ. This corresponds to the singularity of the

type ∼1/(ne − neμ) when the density ne of the electrons is used rather than
the variable u. (If collisions of the electrons inside the stripe are taken into
account, this singularity is transformed into a sharp finite-value maximum.)
The second kind of singularity is of the type ∼√

u − uν and is due to the
waveguide character of the stripe. The author exemplifies his theory with a
configuration defined with the gap ratio a/Lx = 1/2.

PACS numbers: 03.65.Nk, 05.60.Gg, 61.05.jm, 73.40.Cg, 73.63.Rt

1. Introduction

Solid state physicists used to speak of size effects usually in connection with studying
the dependence of transport parameters of metallic or semiconductor thin films on their
thickness. As a rule, nowadays we distinguish between classical and quantum size effects,
the first concerning films with thicknesses comparable with the mean free path of conduction
electrons [1], and the second concerning much thinner films, such films whose thickness
is comparable with the mean de Broglie wavelength of the conduction electrons. As the
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Figure 1. Scheme of the stripe with the diaphragm. The gap in the diaphragm of width a is the
QPC, regions 1 and 2 are leads to it.

wavelength λF = 2π/kF corresponding to the Fermi momentum h̄kF in metals is of the order
of magnitude of atomic radii, the quantum size effects were studied preferably with semi-
metallic (such as bismuth) films [2], or with degenerate semiconductor (such as n-InSb) films
[3, 4], where λF can be by 2–3 orders of magnitude greater than in metals. The literature about
the quantum size effects is enormous, cf, e.g. the review article [5] published in 1982. Since
then, many observations of quantum size effects were reported.

When an ideal electron gas is confined between impenetrable parallel walls that are a
given distance Lx apart, we can imagine standing de Broglie waves with kx equal to ±πν/Lx

(ν = 1, 2, . . .) This means that when considering a given density of the electrons ne at T = 0,
we may speak of ‘Fermi disks’ instead of the Fermi sphere (which is the usual concept in case
of bulk metallic samples). Employing the well-known Sommerfeld model, we may interpret
Lx as the thickness of a metallic film, or an n-type InSb film. In our early paper [3], we have
derived the dependence of the Fermi energy on the thickness Lx , showing that this dependence
resembled damped oscillations. These oscillations were of a non-harmonic type: there were
jags at points of local maxima and we could clarify each jag as the onset of a new pair of disks
inside the Fermi sphere when the thickness Lx increased. (The radius kF of the Fermi sphere
was thickness dependent, although the density ne was kept constant.)

In the present paper, we will return to the idea presented in [3], but now considering its
2D analogy. In the case that we will treat, we will not have in mind a 3D electron gas between
parallel planes, but a 2D electron gas between parallel straight lines. Thus, instead of a thin
layer, now we will consider a stripe on a plane, assuming that Lx is the width of this stripe.
Moreover, we will consider a diaphragm in the stripe, as is shown in figure 1. We call the
gap in the diaphragm the quantum point contact (QPC). The lower and upper part of the stripe
are actually leads to the QPC. In 1988, two groups [6, 7] published results of measurements
with 2D QPCs (although designed with a geometry different from that shown in figure 1)
and corroborated excellently the phenomenon of the conductance quantization. Afterwards,
during the last two decades, many theoretical papers emerged so that now we may state
that various problems connected with this phenomenon were clarified in detail [8–19]. As a
rule, the authors of these papers directed their analysis on quantum-mechanical consequences
following from the geometrical constriction defining the QPC as such, but did not pay attention
to the leads to the QPC from the quantum-mechanical viewpoint. Instead, they either treated
electrons in the leads quasi-classically, or did not pay attention to the leads at all. However,
if the leads are sufficiently narrow, they should necessarily be treated as quantum-mechanical
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waveguides. Therefore, when theorizing about a QPC, it is indispensable to deal with the
system ‘QPC+leads’ as with a whole. The model suggested by the scheme in figure 1 defines
a quantum-mechanical problem which is exactly solvable. How to derive the solution of this
problem is the proper objective of the present paper.

2. Mathematical preliminaries

We will solve the Schrödinger equation describing the 2D motion of electrons in a stripe of
a given width Lx . We define the boundaries of the stripe as the straight lines x = ±Lx/2.
The problem with which we intend to deal is the scattering of electrons on a diaphragm laid
perpendicularly across the stripe (figure 1). We lay the diaphragm, assuming that its thickness
is zero, on the x-axis. We consider the lower (upper) half of the stripe, defined by the inequality
y < 0 (y > 0), as region 1 (region 2). Correspondingly, we write the wavefunction of an
electron as ψ(τ)(x, y) ≡ ψ(τ)(r) with τ = 1 if y < 0 and τ = 2 if y > 0. (r is the 2D position
vector.) Neglecting the potential energy due to scatterers of electrons inside the regions 1 and
2, we may write the equations

∇2ψ(1)(r) + k2ψ(1)(r) = 0 for y < 0,

∇2ψ(2)(r) + k2ψ(2)(r) = 0 for y > 0,
(1)

where

k =
√

2mE/h̄ > 0. (2)

E > 0 is the one-electron energy. We consider the regions 1 and 2 as (quasi)metallic leads
and interpret them as reservoirs of a gas of non-interacting electrons at T = 0. Equations (1)
correspond to the parabolic dispersion law

E = h̄2
(
k2
x + k2

y

)
2m

(3)

of the conduction electrons in the leads, with a scalar effective mass m > 0.
We define the diaphragm with a window of width a centered at x = 0. Then we postulate

the boundary conditions

ψ(1)(Lx/2, y) = ψ(1)(−Lx/2, y) = 0 for y < 0,

ψ(2)(Lx/2, y) = ψ(2)(−Lx/2, y) = 0 for y > 0
(4)

and

ψ(1)(x,−0) = 0 for a/2 < |x| < Lx/2,

ψ(2)(x, +0) = 0 for a/2 < |x| < Lx/2.
(5)

In the window, we postulate the continuity of the wavefunction and of its derivative with
respect to y

ψ(1)(x,−0) = ψ(2)(x, +0)

∂ψ(1)(x, y)/∂y|z=−0 = ∂ψ(2)(x, y)/∂y|z=+0

}
for −a/2 < x < a/2. (6)

The motion of the conduction electrons is quantized in the x-direction. We write

Ex
ν (Lx) = h̄2

2m

(
πν

Lx

)2

ν = 1, 2, . . . . (7)

The energy Ex
ν (Lx) is doubly degenerated, as the electrons may travel towards the diaphragm

either in the positive or in the negative direction of the y-axis. Respectively, we may speak of
states |ν〉+ and |ν〉−. From now on, we will focus attention on states |ν〉+.
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Figure 2. If a suitable scale is used, this figure shows the dependence of kF on ne or on |Ez|.

Let EF be the Fermi energy of the conduction electrons at T = 0, and let h̄kF be the Fermi
momentum

kF =
√

2mEF/h̄. (8)

With a fixed value of the width a of the window, we may employ

u = kFa (9)

as a suitable dimensionless variable. Since we consider the parabolic dispersion law, the
energy E for any value of |k| = k is a sum of contributions due to the motion in the x- and
y-directions. Therefore, we define the energy difference

Ey
ν (Lx) = E − Ex

ν (Lx), (10)

which we write as Ey

F,ν(Lx) if E = EF. We define also the positive variable

ky
ν (Lx) =

√
2mEy

ν (Lx)/h̄ =
√

k2 − π2ν2/L2
x (11)

if Ey
ν (Lx) > 0 (i.e. if k > πν/Lx), which we write as k

y

F,ν(Lx) if k = kF. Clearly, values of k
that are smaller than π/Lx are forbidden.

As is well known, the 2D electron gas can be realized near to a planar surface of a direct-
gap semiconductor (such as GaAs) if a strong perpendicular electrical field Ez is applied.
(We define the surface as the plane z = 0.) If the field Ez is suitably adjusted, it attracts
a ‘cloud’ of electrons near to the surface. When neglecting the intrinsic surface charge due
to quantum-mechanical surface states, we may state that the density ne of the electrons (i.e.
their number per unit area of the surface) is equal (according to the Poisson equation of
electrostatics) to e|Ez|/ε. (ε is the permittivity of the semiconductor.) Thus the field Ez can
control the value of the density of the electrons ne. However, we may also use kF as a variable
that can be controlled by the external field Ez. This possibility is based on the fact that there
is a one-to-one correspondence between kF and ne (cf figure 6 in the appendix).

Figure 2 is the inversion of figure 6. Since the variables u and F used in the appendix are
proportional to kF and ne, respectively, figure 2 may be interpreted as the dependence of the
variable kF on the electron density ne or (as ne is proportional to Ez) also as the dependence
of kF on the perpendicular electrical field Ez. The presence of the ‘jags’ (although they are
obtuse) in the curve shown in figure 2 is actually a manifestation of a quantum size effect
in the sense suggested in the introduction. Indeed, if we consider, instead of one stripe, an
ensemble of stripes with various widths Lx and stipulate the constancy of the density ne of
the electrons in all the stripes, then we can easily transform the plot shown in figure 2 into a
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plot that will correspond to the dependence of kF on Lx . In the limiting case, we obtain the
well-known result for the 2D electron gas that is not confined in the x-direction

lim
Lx→∞

kF =
√

2πne. (12)

The curve in figure 2 essentially follows this dependence, but is perturbed by the ‘jags’.
Now we can specify the objectives of the present paper. In section 3, we will derive the

exact solution of the Schrödinger equation for the QPC plus the leads corresponding to the
scheme shown in figure 1. Afterwards, in section 4, we will calculate the conductance of this
QPC.

3. Solution of the Schrödinger equation

Having in mind figure 1, we consider an electron impacting with k
y
ν (Lx) from the side of

region 1 upon the diaphragm. The value of ν is an arbitrary positive integer, ν = 1, 2, . . . .

The corresponding incident wavefunction ψ(0)
ν (r) may be either even or odd in the variable x

ψ(0)
ν (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Nν

√
2

Lx

cos

(
πνx

Lx

)
exp

[
iky

ν (Lx)y
]

if ν is odd,

Nν

√
2

Lx

sin

(
πνx

Lx

)
exp

[
iky

ν (Lx)y
]

if ν is even.

(13)

Nν is a real normalizing coefficient; we will define it later on (cf formula (30)). In the style of
a scattering theory, we introduce the wavefunctions χ(τ)

ν (x, y) = χ(τ)
ν (x, y)(r) (τ = 1, 2)

ψ(1)
ν (r) = ψ(0)

ν (r) + χ(1)
ν (r), y < 0,

ψ(2)
ν (r) = χ(2)

ν (r), y > 0.
(14)

3.1. Autonomous derivation of the functions χ(1)
ν (x,−0) = χ(2)

ν (x, +0) and
∂χ(1)

ν (r)/∂z
∣∣
y=−0 = ∂χ(2)

ν (r)/∂z
∣∣
y=+0 in the window (−a/2 < x < a/2)

We will now discuss the solution of the Schrödinger equation in a narrow oblong with bases
y = ±ε/2 and with sides x = ±a/2, assuming that the thickness ε > 0 of this oblong is very
small, ε 	 a. We introduce the orthonormal set of the functions, indexed by μ = 1, 2, . . .

and defined for x ∈ (−a/2, a/2),

ϕμ(x) =

⎧⎪⎪⎨
⎪⎪⎩

√
2

a
cos

(πμx

a

)
, μ = odd,√

2

a
sin

(πμx

a

)
, μ = even.

(15)

Correspondingly we define the lateral energy values

Ex
μ(a) = h̄2

2m

(πμ

a

)2
μ = 1, 2, . . . (16)

and the energy differences

Ey
μ(a) = E − Ex

μ(a). (17)

We say that μ enumerates possible QPC modes, or synonymously QPC ‘channels’. We use
the denotation

ky
μ(a) =

{√
2mEy

μ(a)/h̄ =
√

k2 − π2μ2/a2 > 0 if Ey
μ(a) > 0,√

2m|Ey
μ(a)|/h̄ =

√
π2μ2/a2 − k2 > 0 if Ey

μ(a) < 0.
(18)
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Let M(k) � 1 be the maximum value of the index μ for which k > πM(k)/a. Then, for
x ∈ (−a/2, a/2), we express χ(τ)

ν (x, y) as the series

χ(1)
ν (x, y) ≡ �(1)

ν (x, y) =
M(k)∑
μ=1

rμ
ν ϕμ(x) exp

[−iky
μ(a)y

]

+
∞∑

μ=M(k)+1

rμ
ν ϕμ(x) exp

[
+κy

μ(a)y
]
, y ∈ (−ε/2, 0),

χ(2)
ν (x, y) ≡ �(2)

ν (x, y) =
M(k)∑
μ=1

tμν ϕμ(x) exp
[
+iky

μ(a)y
]

+
∞∑

μ=M(k)+1

tμν ϕμ(x) exp
[−κy

μ(a)y
]
, y ∈ (0, ε/2).

(19)

(Of course, μ at ‘r’ and ‘t’ is to be read as a superscript, not as a power.) For x ∈ (−a/1, a/2),
we write also the series√

2

Lx

cos

(
πνx

Lx

)
=
√

2

a

∑
oddμ>0

cμ
ν cos

(πμx

a

)
if ν is odd,

√
2

Lx

sin

(
πνx

Lx

)
=
√

2

a

∑
evenμ>0

cμ
ν sin

(πμx

a

)
if ν is even.

(20)

For formal reasons, we deem it useful to define the dimensionless parameter

γ = a/Lx (21)

which we call the gap ratio. (It is the ratio between the width of the window in the diaphragm
and the width of the leads.) The maximum value of the gap ratio, γmax = 1, corresponds to
the absence of the diaphragm. On the other hand, γmin = 0 corresponds to the absence of the
window in the diaphragm.

The Fourier analysis gives us the coefficients

cμ
ν =

⎧⎪⎪⎨
⎪⎪⎩

2
√

γ

[
sin[(π/2)(μ − νγ )]

μ − νγ
+

sin[(π/2)(μ + νγ )]

μ + νγ

]
if both μ, ν are odd,

2
√

γ

[
sin[(π/2)(μ − νγ )]

μ − νγ
− sin[(π/2)(μ + νγ )]

μ + νγ

]
if both μ, ν are even.

(22)

Otherwise cμ
ν = 0.

Our primary objective is to calculate the one-electron current density

j
(1e)
2 (x, y) = ieh̄

2m

(
ψ(2)∗(r)

∂ψ(2)(r)

∂y
− ψ(2)(r)

∂ψ(2)∗(r)
∂y

)
(23)

for y → +0. This is equal to

j
(1e)
1 (x, y) = ieh̄

2m

(
ψ(1)∗(r)

∂ψ(1)(r)

∂y
− ψ(1)(r)

∂ψ(1)∗(r)
∂y

)
(24)

for y → −0. The incident wavefunction ψ(0)
ν (r) gives rise to the (one-electron) electrical

current through the window in the diaphragm

J (1e)
ν (k) =

∫ a/2

−a/2
dx j

(1e)
2ν (x, +0) =

∫ a/2

−a/2
dx j

(1e)
1ν (x,−0). (25)

6



J. Phys. A: Math. Theor. 42 (2009) 055206 V Bezák

Recalling formulae (14) and employing series (19) in formulae (23), (24), we find (when
respecting the orthonormality of the functions ϕ(e,o)μ(x)) that the current is equal to the sum

J (1e)
ν (k) = −eh̄

m

M(k)∑
μ=1

∣∣tμν ∣∣2ky
μ(a). (26)

This formula indicates that we need not consider the evanescent waves involved in expressions
(19). Since μ is the serial number of the channel into which the wave with k

y
ν (Lx) may

be transmitted when crossing the QPC under consideration, we interpret
∣∣tμ(e,o)ν

∣∣2ky
μ(a) as a

quantity proportional to the probability of this transmission per unit time. For the energy E ,
there are M(k) channels.

Applying conditions (6), we obtain the equations

Nνc
μ
ν + rμ

ν = tμν , Nνc
μ
ν ky

ν (Lx) − rμ
ν ky

μ(a) = tμν ky
μ(a).

Hence

tμν = Nν

cμ
ν

2

k
y
ν (Lx) + k

y
μ(a)

k
y
μ(a)

, rμ
ν = Nν

cμ
ν

2

k
y
ν (Lx) − k

y
μ(a)

k
y
μ(a)

. (27)

Obviously, in addition to the possibility of the transmission, the electron, when impacting
upon the diaphragm with k

y
ν (Lx), may also be reflected. We stipulate that

∣∣rμ

(e,o)ν

∣∣2ky
μ(a) is

proportional to the probability for the reflection per unit time into the μth channel. With this
interpretation, we may write the alternative expression for the current J (1e)

ν (k) in the form

J (1e)
ν (k) = −eh̄

m

⎡
⎣ky

ν (Lx) −
M(k)∑
μ=1

∣∣rμ
ν

∣∣2ky
μ(a)

⎤
⎦ , (28)

so that

ky
ν (Lx) =

M(k)∑
μ=1

∣∣rμ
ν

∣∣2ky
μ(a) +

M(k)∑
μ=1

∣∣tμν ∣∣2ky
μ(a), (29)

According to this balance equation, the flow k
y
ν (Lx) is ramified into M(k) channels both

backwards and forwards. Equation (29) implies that

Nν ≡ N(M)
ν =

√
2

⎡
⎣M(k)∑

μ=1

[
cμ
ν

]2 k
y
μ(a)2 + k

y
ν (Lx)

2

k
y
μ(a)k

y
ν (Lx)

⎤
⎦

−1/2

. (30)

Thus the normalizing coefficient is channel dependent. We have indicated this fact by adding
the superfix ‘M’ in Nν .

3.2. Functions χ(1)
ν (r) and χ(2)

ν (r) in the corresponding half-stripes y < 0 and y > 0

For the problem that is the objective of the present paper (the conductance quantization), it is
not necessary to calculate completely the wavefunctions χ(1)

ν (r) and χ(2)
ν (r) for all respective

values of y < 0 and y > 0. Nevertheless, the calculation of these functions is an assignment
worth in its own right. Now we will briefly show how this calculation can be implemented.
We extend analytically the functions �(2)

ν (x, y) and �(1)
ν (x, y) defined by sums (19) in the

whole respective half-stripes, i.e. for x ∈ (−Lx/2, Lx/2) and, respectively, for y < 0 and
y > 0. For general values of y outside the infinitesimal intervals (−ε/2, 0) and (0, ε/2), we
write

χ(2)
ν (x, y) = �(2)

ν (x, y) + ω(2)
ν (x, y), y > 0,

χ(1)
ν (x, y) = �(1)

ν (x, y) + ω(1)
ν (x, y), y < 0.

(31)

7
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The corrective functions ω(τ)
ν (x, y) have to obey simple boundary conditions. For brevity, we

will confine ourselves to writing down these conditions for ω(2)
ν (r)

ω(2)
ν (x, +0) = 0

∂ω(2)
ν (r)/∂y

∣∣
y=+0 = 0

}
if |x| < a/2 (32)

and

ω(2)
ν (x, +0) = −�(2)

ν (x, +0)

∂ω(2)
ν (r)/∂y

∣∣
y=+0 = −∂�(2)

ν (r)/∂y
∣∣
y=+0

}
if a/2 < |x| < Lx/2. (33)

(It is perhaps needless to emphasize that now we consider �(2)
ν (r) and ∂�(2)

ν (r)/∂y as known
functions!) We require also the fulfilment of the conditions

ω(2)
ν (−a/2, y) = ω(2)

ν (+a/2, y) = 0, y > 0. (34)

Finally, we require that

ω(2)
ν (r) → 0 if y → ∞. (35)

Of course, �(2)
ν (r) does not tend to zero if y → ∞. We may imagine the diaphragm as a

source of ‘radiation’. The function ω(2)
ν (r) could be interpreted as due to the radiation of the

intervals (−Lx/2,−a/2) and (a/2, Lx/2) at the flanks of the window. However, an observer
standing at y = +∞ cannot state that only a part of the interval (−Lx/2, Lx/2) radiates. This
explains why the contribution of the flanks to the value of ω(2)

ν (r) has to approach zero if
y → ∞.

With boundary conditions (32)–(35), the solution ω(2)
ν (r) of the equation

∇2ω(2)
ν (r) + k2ω(2)

ν (r) = 0 for −Lx/2 < x < Lx/2 and y > 0 (36)

is defined completely. In order to express ω(2)
ν (r) explicitly, we introduce Green’s function

G(r|r0) as the solution of the equation

∇2G(r|r0) + k2G(r|r0) = −δ(r − r0) for y ∈ (−∞, +∞), (37)

requiring the fulfilment of the boundary conditions

G(−Lx/2, y|r0) = G(Lx/2, y|r0) = 0, (38)

lim
y→+∞ G(r|r0) = lim

y→+∞
∂G(r|r0)

∂y
= 0. (39)

To satisfy condition (38), we define Green’s function as the sum

G(r|r0) = G0(x, y|r0) +
∞∑

n=1

(−1)n[G0(nLx − x, y|r0) + G0(nLx + x, y|r0)]. (40)

The function G0(x, y|r0) itself has to satisfy equation ∇2G0 + k2G0 = −δ(r − r0) and
conditions (39). The explicit form of G0(x, y|r0) reads

G0(x, y|r0) = G0(x − x0, y − y0|0) = i

4
H 1

0 (k
√

(x − x0)2 + (y − y0)2). (41)

(Note that G0(x, y|0) = G0(−x, y|0).) H 1
0 (ρ) is the Bessel function of the third kind known

as the Hankel function, H 1
0 (ρ) = J0(ρ) + iY0(ρ). We multiply equation (36) by G(r|r0) and

equation (37) by ω2
ν(r). Then we obtain, after exchanging the variables r and r0, the equality

∇0.
[
G(r0|r)∇0ω

(2)
ν (r0) − ω(2)

ν (r0)∇0G(r0|r)
] = δ(r0 − r)ω(2)

ν (r0).

8



J. Phys. A: Math. Theor. 42 (2009) 055206 V Bezák

We integrate this equality with respect to r0 in the upper half-stripe (i.e. for y > 0) between
the boundaries x = ±Lx/2 and employ Gauss’ theorem. The result is

ω(2)
ν (r) =

[∫ −a/2

−Lx/2
dx0 +

∫ Lx/2

a/2
dx0

]
{
G(x0, 0|r)∂�(2)

ν (r0)/∂y0

∣∣
y0=+0 − �(2)

ν (x0, +0)∂G(r0|r)/∂y0

∣∣
y0=+0

}
.

(42)

Here we have utilized boundary conditions (32) and (33) at y = +0. Equation (42) is
actually the direct integral formula for ω(2)

ν (r) and this function, when inserted in formula
(31), determines the wavefunction ψ(2)

ν (r).
Quite analogically, we can derive the function ω(1)

ν (r) and then, respecting formulae (14)
and (31), the wavefunction ψ(1)

ν (r) for the lower half-stripe (for y < 0) between the boundaries
x = ±Lx/2.

Above, cf formula (25), we have calculated the one-electron current J (1e)
ν (k) as the current

flowing just through the window at y = +0. However, the value of J (1e)
ν (k) has to be the same

even when calculated, e.g., at y → +∞. We can prove this easily. Indeed, owing to condition
(35), we may state that

J (1e)
ν (k) = ieh̄

2m
lim

y→∞

∫ Lx/2

−Lx/2
dx

(
�(2)∗

ν (r)
∂�(2)

ν (r)

∂y
− �(2)

ν (r)
∂�(2)∗

ν (r)

∂y

)

= −eh̄

m

M(k)∑
μ=1

∣∣tμν ∣∣2ky
μ(a). (43)

Thus, to solve autonomously the problem formulated in subsection 3.1 has been an
efficacious starting point. Afterwards, as we have shown, it is possible, if there is a need for
it, to derive the solution ψν(r) of the Schrödinger equation exactly and completely.

4. Conductance of the QPC

4.1. Derivation of the Landauer–Büttiker formula

If k = kF, we put the subscript ‘F’ in front of μ in expressions (16), (17) and (18). We assume
that both the compartments in figure 1 separated by the diaphragm with the window (i.e. the
leads to the window) host an ideal electron gas at T = 0. Since we treat the window as a QPC,
our objective is to consider the non-equilibrium situation when a voltage U is applied on the
QPC. We realize that if E (2)

F = EF is the Fermi energy of the upper compartment, we have to
consider a different value of the Fermi energy in the lower compartment, E (1)

F = EF + eU . We
take eU > 0 as a small value. Then

k
(1)
F =

√
2m(EF + eU)

h̄2 ≈
√

2mEF

h̄2

(
1 +

eU

2EF

)
= kF +

meU

h̄2kF
,

where kF = k
(2)
F =

√
2mEF/h̄

2. At T = 0, the electrons with a given energy E < EF can be
exchanged between both the compartments 1 and 2, but this does not give a contribution to the
electrical current across the diaphragm. The net current is due to the electrons whose energy
E in compartment 1 lies in the interval (EF, EF + eU/(2EF)); the values of k =

√
2mE/h̄2

then lie in the interval (kF, kF + meU/(h̄2kF)). Correspondingly, if we consider the μth QPC
channel in compartment 1 and use formula (18), we find that

k
(1)
Fμ(a) =

√
k

(1)2
F − π2μ2/a2 =

√
k2

F − π2μ2/a2 +
2meU

h̄2 ≈ k
y

Fμ(a) +
meU

h̄2k
y

Fμ(a)
,

9
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where k
y

Fμ(a) =
√

k2
F − π2μ2/a2. Hence, only few electrons can participate in the transport

of charge from compartment 1 to compartment 2 employing the μth QPC channel: we have
only to reckon with the electrons whose y-component k

y
μ(a) of the wave vector satisfies the

inequalities

k
y

Fμ(a) < ky
μ < k

y

Fμ(a) +
meU

h̄2k
y

Fμ(a)
.

The number of allowed values of k
y
μ(a) in any interval of unit length is 1/(2π). However,

an electron with a given value of k
y
μ(a) may have either spin up or spin down. Therefore,

when considering the electrons in the νth state (the νth mode of the leads taken as quantum-
mechanical waveguides) and in the μth QPC channel, we obtain readily their contribution to
the electrical current flowing through the QPC

Jμ
ν = −�qU

MF∑
μ=1

∣∣tμν ∣∣2, (44)

where

�q = 2e2/h. (45)

The transmission of electrons from compartment 1 to compartment 2 implies the negative
value of the associated electrical current Jμ

ν ; hence the sign minus in formula (44). The
quantity �q is the conductance quantum.

For E → EF , we have to considerNF waveguide modes (cf appendix A) andMF = M(kF)

QPC channels. We define the conductance of the QPC as the coefficient � in the linear relation

|J | = �|U |. (46)

In this way, we have derived the conductance of the QPC corresponding to figure 1 in the form

� = �q

MF∑
μ=1

NF∑
ν=1

∣∣tμν ∣∣2. (47)

This is actually the well-known Landauer–Büttiker formula [20]. However, we have not
only proved the validity of this formula, in fact, we have also shown how to calculate the
transmission probabilities

∣∣tμν ∣∣2.

4.2. Conductance quantization

The integers NF and MF depend on the density ne of the electrons in the leads. For a given
width Lx of the leads, we prefer to use the dimensionless variable L2

xne instead of ne. Then
we may speak of step-like functions NF

(
L2

xne
)
,MF

(
L2

xne
)

and, consequently, also of the
step-like function �

(
L2

xne
)
. However, ne is a monotonous function of kF, as it can be derived

explicitly: see formula (A.5) of the appendix and figure 6. Instead of kF, we prefer to use the
dimensionless variable u = akF. Then we may speak of step-like functions NF(u),MF(u)

and, consequently, of the step-like function �(u). Each jag in the curve plotted in figure 2
corresponds to the change of NF by one. On the other hand, when MF is increased by one,
this corresponds to the opening of a new QPC channel.

4.2.1. Dependence of � on akF. We will now exemplify the situation choosing the width a
of the QPC (i.e. the width of the gap in the diaphragm shown in figure1) equal to Lx/2; then
γ = 1/2. As we do not consider evanescent waves in the leads, the value of kF has to be

10
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Figure 3. Dependence of the conductance �/�q on the variable u = akF.

Table 1. Survey of lead modes, QPC channels and transmission amplitudes t
μ
ν for E < EF

determining the conductance of the QPC for γ = a/Lx = 1/2. Table is constructed for the first
two conductance steps.

Interval of u MF = total of NF = total of μ = serial number ν = serial number t
μ
ν = transmission

(u = akF) active channels of active modes of channel of lead mode amplitude

(0, π/2) 0 0 – – –
(π/2, π) 0 1 – 1 –
(π, 3π/2) 1 2 1 1 t1

1

(3π/2, 2π) 1 3 1 1 t1
1

3 t1
3

(2π, 5π/2) 2 4 1 1 t1
1

3 t1
3

2 2 t2
2

4 t2
4

(5π/2, 3π) 2 5 – – –
1 5 t1

5

Note: For 5π/2 < u < 3π,MF = 2,NF = 5, the table is the same as for 2π < u < 5π/2,MF = 2,NF = 4; only
the transmission amplitude t1

5 is added

greater than π/Lx . (This may be interpreted as a manifestation of the uncertainty principle.)
Consequently, it is necessary that u = akF > π/2 (for γ = 1/2). In tables 1 and 2, we
show which values of the transmission amplitudes tμν contribute to the value of the QPC
conductance. The � versus u plot shows that �(u) is a step-like function. The positions
of the edges of its steps are at uμ = πμ,μ = 1, 2, . . . . The function �(u) is shown in
figure 3. Owing to our special choice of the gap ratio, γ = 1/2, tables 1 and 2 are relatively
simple since the values of πν/Lx and πμ/a coincide if ν = 2μ. As is seen in figure 3, the �

versus u plot manifests jags. In general, positions of the jags are given by the values uν = πνγ

(ν = 1, 2, . . .). In our case, since γ = 1/2, the jags are present only with odd integers ν.
The absence of the jags if ν = 2j (j = 1, 2, . . .) follows from the fact that the function �(u)

behaves as A/
√

u2 − π2j 2 + B
√

u2 − π2j 2 (with A > 0, B > 0) if u approaches πj from the
right; obviously, B

√
u2 − π2j 2 is negligible in comparison with A/

√
u2 − π2j 2. However,

with a general value of the gap ratio γ = a/Lx (mathematically speaking, with γ equal to an
irrational number), there is no correlation between positions uν of jags and positions uμ of
step edges.

11
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u.The diagrams correspond (from the left to the right) to increasing values of 

Sequence of transitions contributing to the value of the QPC conductance.

Figure 4. Diagrams corresponding to table 1 (the first four diagrams) and table 2 (the last two
diagrams).

Table 2. Continuation of table 1. The table is constructed for the third conductance step. (With
γ = 1/2, the table concerns NF = 6 and NF = 7.)

Interval of u MF = total of NF = total of μ = serial number ν = serial number t
μ
ν = transmission

(u = akF) active channels of active modes of channel of lead mode amplitude

(3π, 7π/2) 3 6 1 1 t1
1

3 t1
3

5 t1
5

2 2 t2
2

4 t2
4

6 t2
6

3 1 t3
1

3 t3
3

5 t3
5

(7π/2, 4π) 3 7 – – –
1 7 t1

7

3 7 t3
7

Note: For 7π/2 < u < 4π,MF = 3,NF = 7, the table is the same as for 3π < u < 7π/2,MF = 3,NF = 6; only
the transmission amplitudes t1

7 and t3
7 are added.

To make the meaning of tables 1 and 2 more apparent, we present figure 4 in which
we illustrate schematically the transitions represented by the transmission coefficients tμν .
Figure 4 involves six diagrams showing the upper part of the ‘Fermi circle’ drawn in the
(kx, ky)-plane. (In each diagram, the horizontal axis is kx and vertical axis is ky . In
the 2D k-space, the Fermi circle is the analogy to the Fermi sphere in the 3D k-space.)
The thin vertical straight lines in the diagrams of figure 4 correspond to the lead modes.
They are numbered under each semicircle. Two equal numbers mean one mode since the
quantization in the x-direction is related to two opposite waves, exp(ikxνx) and exp(−ikxνx),

12
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Figure 5. Dependence of the conductance �/�q on the variable F = L2
xne (and thus, for a given

width Lx of the leads, on the density of electrons ne).

where kxν = πν/Lx . The little circles on the Fermi circle symbolize infinitesimal regions
in the k-space corresponding to ‘active channels’. These little circles are enumerated by the
index μ. Again, two equal numbers μ (the left and the right) represent one channel. The
thick straight lines drawn in the diagrams of figure 4 represent the transmission coefficients
tμν . When considering these lines as arrows whose end points are the little circles, we may
interpret the diagrams of figure 4 as analogues of Feynman’s diagrams. (Of course, we could
draw each thick line in the diagrams in four ways: the line may connect the left or right mode
line with the left or right channel circle. For clarity of the graphs, we have depicted the lines
from the left to the right if ν and μ are odd and from the right to the left if ν and μ are even.)

The interpretation of the diagrams of figure 4 is simple. If the gap ratio γ is kept constant,
the diagrams in figure 4 illustrate the evolution of the situation with growing values of kF.
(Here a remark should be said: for convenience’s sake, we depicted schematically all the Fermi
circles with the same radius.) The first diagram corresponds to the process characterized by
the transmission coefficient t1

1 . It is the situation when the first channel is just starting to
become active. When kF becomes greater than uν/a, the circles labelled by μ = 1 begin
moving towards the top of the Fermi circle. The second diagram shows the situation when the
third mode becomes active. Then we have to consider two transmission coefficients, t1

1 and t1
3 .

In figure 3, this situation corresponds to the jag in the middle of the first conductance step. The
last two diagrams correspond to the transmission coefficients involved in table 2. For instance,
the sixth diagram, concerning the second half of the third step (when 7π/2 < u < 4π ), shows
that the value of the conductance �(u) is determined altogether by 11 coefficients tμν (eight
with odd indices μ, ν and three with even indices μ, ν).

4.2.2. Dependence of � on L2
xne. As figure 2 clearly suggests, kF is a monotonous function

of the density ne. Therefore, we may consider u as a well-defined function of the variable
F = L2

xne. Correspondingly, we can depict the dependence of the conductance � of the QPC
on the density of the electrons ne. This dependence is shown (for γ = 1/2) in figure 5. The
positions of the left edges of the three steps drawn (but also of the fourth step which is not
drawn) in figure 5, F = F

edge
j , are

F
edge
1 = L2

xn
edge
e1 = 2

√
3 = 3.464,

F
edge
2 = L2

xn
edge
e2 = 2(

√
15 +

√
12 +

√
7) = 19.966,

F
edge
3 = L2

xn
edge
e3 = 2(

√
35 +

√
32 +

√
27 +

√
20 +

√
11) = 49.116,

F
edge
4 = L2

xn
edge
e4 = 2(

√
63 +

√
60 +

√
55 +

√
48 +

√
39 +

√
28 +

√
15) = 90.874.
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In the central part of each step, there is one jag. Positions of the jags, F = F
jag
j , are

F
jag
1 = L2

xn
jag
e1 = 2(

√
8 +

√
5) = 10.129,

F
jag
2 = L2

xn
jag
e2 = 2(

√
24 +

√
21 +

√
16 +

√
9) = 32.963,

F
jag
3 = L2

xn
jag
e3 = 2(

√
48 +

√
45 +

√
40 +

√
33 +

√
24 +

√
13) = 68.420.

In the close vicinity on the right side of any value F
edge
j , the function �(F) behaves as

∼1
/(

F − F
edge
j

)
. This behaviour corresponds to ∼1/

√
u − jπ in the right vicinity of the

value u = jπ , provided that � is taken as a function of u = akF. Thus, the singularities at
F = F

edge
j in the plot � versus ne are incontestable (they are even more apparent than the

corresponding singularities in the plot � versus kF). On the other hand, the presence of the
jags when the conductance � is plotted as a function of the density ne does not seem to be
relevant enough. (The positions of the jags are highlighted by thin vertical straight lines in
figure 5.) As is seen, the derivative d�/dF , when F approaches the value F = F

jag
j from the

right, is finite, in contrast to the derivative d�/dkF tending to infinity (this should particularly
be manifest if figure 3 were stretched vertically) when kF approaches k

jag
Fj from the right.

5. Conclusion

We can summarize the main results of this paper as follows. We have presented a detailed
theory of the conductance of the quantum point contact defined by the configuration depicted
in figure 1. The QPC was defined as a gap in a thin diaphragm. We have shown that it was
possible to accomplish the calculation of the conductance of the QPC in an exact manner
under standard simplifying conditions which were accepted previously by other authors. Here
we recollect some of these conditions. The leads were deemed to be reservoirs of a 2D gas
of non-interacting electrons at T = 0. The wavefunctions of the electrons were put equal to
zero at both surfaces of the diaphragm. The conductance was calculated in the limit of a small
current flowing through the QPC.

In contrast with other authors, we considered the leads to the QPC as quantum-mechanical
waveguides. We employed the simplest boundary condition for the electron wavefunctions:
we required that the wavefunctions have to approach zero at the boundaries of the leads. By
thorough calculations, we strived to show that in case of narrow leads, it was indispensable to
solve the problem of the quantization of the conductance of the QPC as a problem belonging
to the theory of quantum size effects. The wavefunctions ψ(0)(r) of electrons travelling in the
lead of width Lx towards the QPC have factors cos(πνx/Lx) (if ν is odd) or sin(πνx/Lx) (if
ν is even). We treated ν as an index defining the electron modes in the lead. On the other hand,
we paid also heed to another index, μ, enumerating ‘channels’ of the QPC under consideration.
Namely, when y → 0, the wavefunctions ψν(r) ≡ ψν(x, 0) in the interval (−a/2, a/2) of the
coordinate x (the interval defining the QPC) can be developed in the Fourier series involving
cos(πμx/a) (if μ is odd) and sin(πμx/a) (if μ is even). An electron, being in mode ν and
impacting upon the QPC, may employ, being transmitted through the QPC, any channel μ.
These transmissions can be characterized by coefficients tμν and we showed how to calculate
them exactly. Then we proved that the conductance � of the QPC can be expressed as a sum
involving the squares of all possible coefficients tμν . Thus we actually corroborated the validity
of the well-known Landauer–Büttiker formula (cf. equation (47)).

A condensed presentation of our main results has been shown in figures 3 and 5.
If the width a of the QPC is kept constant, figure 3 shows the dependence of the

conductance � of the QPC on the Fermi momentum h̄kF. (We preferred to use the
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Figure 6. The first five segments (and a part of the sixth segment) of the function F(u/γ ). (The
‘zeroth segment’ is F ≡ 0.)

dimensionless variable u = akF.) Figure 3 shows singularities that are of two kinds. First,

there are the singularities of the type ∼1
/√

u − u
edge
j

(
u > u

edge
j

)
at the frontal edges of the

conductance steps; second, there are the jags, corresponding to the behaviour of � of the type

∼
√

u − u
jag
j after the jag points

(
u > u

jag
j

)
. The jags stem from the waveguide character of the

leads. As we have elucidated particularly in subsection 4.2, there is no difficulty to comprehend
their origin. Since kF = √

2mEF/h̄, the plot shown in figure 3 can be transformed into a similar
plot illustrating the dependence of � on the Fermi energy EF(kF), with the same singularities

as those shown in figure 3. Although the singularities of the type ∼1
/√

EF − EF
(
u

edge
j

)
seem

to be strange at first sight, we emphasize that their presence in the conductance versus EF plot
is in no contradiction with the Landauer–Büttiker formula which has been, as we have proved
above, confirmed unequivocally by our theory. In fact, we have recently derived singularities
of this type also in the dependence of the conductance of 3D Sharvin contacts on the Fermi
energy [21]. These singularities resemble the Van Hove singularities known in the theory of
the density of states of quasi-particles [22].

In figure 5, which is the direct equivalent of figure 3, we have illustrated the dependence of
� on the density ne of the electrons. (In fact, not the Fermi energy or the Fermi momentum, but
the density ne is controlled primarily in experiments.) If n

edge
ej is the value of ne corresponding

to u = u
edge
j , the singular behaviour of the function �(ne) on the right side of n

edge
ej is of the

type ∼1
/(

ne − n
edge
ej

)
.

The singular behaviour of the coefficients tμν as functions of the variable u is neither
dictated nor prohibited by the Landauer–Büttiker formula. Nothing else than the Schrödinger
equation is responsible for it. The singular behaviour of the function tμν (u) if u approaches
uμ ≡ u

edge
j from the right can be interpreted as a resonance phenomenon: at the resonant

condition when u = u
edge
j , the QPC is ideally transparent for the electrons. The infinite

conductance � means the zero intrinsic resistance RQPC = 1/� of the QPC. However, the
resistance RQPC is in series with the resistance of the leads, Rleads. Therefore, the total
resistance of the system ‘QPC + leads’ is Rtotal = RQPC + Rleads. If RQPC → +0 at u = u

edge
j ,

this means that when measuring the resistance of the point contact, one measures actually the
resistance of the leads. At the resonant condition u = u

edge
j , the conductance �total = 1/Rtotal

is finite, although may be high enough in comparison with values of the conductance of the
QPC at non-resonant values of u.
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Thus, we predict that the conductance of QPCs in � versus ne (or � versus EF) plots
should disclose well detectable maxima at the frontal edges of the conductance steps. At
present, however, we are not aware of any measurements supporting this prediction. We hope
that there is no serious impediment to carry out such measurements.
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Appendix A. Dependence of the density of electrons ne on the variable kF

We will now consider values of k
y
ν (Lx) for which E < EF. Let NF � 1 be the maximum

value of the index ν for which kF > πNF/Lx . If 1 � ν � NF, the electrons can travel as
waves ∼ exp

(±iky
ν (Lx)y

)
in the y-direction, with k

y
ν (Lx) < k

y

F,ν(Lx). (Cf definition (11).)
Following the standard way of derivation, we write the equality

1

π

∫ k
y

F,1(Lx)

−k
y

F,1(Lx)

dky = 2

π
k

y

F,1(Lx) = 2

π

√
k2

F −
(

π

Lx

)2

= Lxne,
π

Lx

< kF <
2π

Lx

. (A.1)

Similarly,

2

π

⎡
⎣
√

k2
F −

(
π

Lx

)2

+

√
k2

F −
(

2π

Lx

)2
⎤
⎦ = Lxne,

2π

Lx

< kF <
3π

Lx

, (A.2)

etc. After multiplying equations (A.1) and (A.2) by a, we introduce the dimensionless quantity
γ = a/Lx and define, for the variable

u/γ = LxkF, (A.3)

the function

F(u/γ ) = L2
xne. (A.4)

Then, using the Heaviside function �(ξ), we may write

F(u/γ ) = 2

π
[
√

(u/γ )2 − π2�(u/γ − π) +
√

(u/γ )2 − (2π)2�(u/γ − 2π)

+ · · · +
√

(u/γ )2 − (NFπ)2�(u/γ − NFπ)] (A.5)

for u < (NF + 1)πγ . The plot of this function is shown in figure 6.
Let F max

j be the maximum value of F(u/γ ) for the j th segment

F max
1 = 2

√
3,

F max
2 = 2(

√
8 +

√
5),

. . .

F max
NF

= 2
(√

(NF + 1)2 − 1 +
√

(NF + 1)2 − 4 + · · · +
√

(NF + 1)2 − N 2
F

)
.

(A.6)

If the value of NF is high, this means that the stripe under consideration is wide. We may
then take the replacements F max

NF
≈ F max

NF−1 → L2
xne,NF → LxkF/π . When introducing a
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continuous surrogate variable t instead of ν/NF and when considering 1/NF as dt , we may
utilize the approximation

F max
NF−1 = 2N 2

F

NF−1∑
ν=1

1

NF

√
1 − ν2/N 2

F → L2
xne ≈ 2

(
LxkF

π

)2 ∫ 1

0
dt
√

1 − t2 = L2
xk

2
F

2π
.

Thus, in the limit of wide stripes, we obtain the parabolic dependence

ne ≈ k2
F

2π
. (A.7)

The curve in figure 6 follows manifestly this parabola. It is interesting that in spite of the
positive second derivative d2ne/dk2

F in the limit of wide stripes (namely d2k2
F/dk2

F = 2), the
second derivative d2ne/dk2

F ∼ d2F/du2 of each segment of the function plotted in figure 6 is
negative!

It is easy to invert formulae (A.1) and (A.2)

π

Lx

< kF = π

Lx

√
1 +

(
L2

xne

2

)2

<
2π

Lx

, (A.8)

2π

Lx

< kF = π

Lx

√(
L2

xne

4
− 3

L2
xne

)2

+ 4 <
3π

Lx

. (A.9)

When using the dimensionless quantities u and γ , we can rewrite these formulae as

u/γ = π
√

1 + F 2/4 if 0 < F < F max
1 , (A.10)

u/γ = π
√

(F/4 − 3/F )2 + 4 if F max
1 < F < F max

2 . (A.11)

To express analytically the dependence of u/γ on F is difficult if F > F max
2 . Nevertheless,

from a graphical viewpoint, the problem of displaying u/γ versus F plot is essentially reduced
to exchanging the axes in figure 6. In this way, we have obtained figure 2 showing the
dependence of u/γ on F.

Appendix B. Calculation of transmission amplitudes for the first three conductance

steps

For the gap ratio γ = 1/2, we obtain, according to formulae (22), the factors

[
c1

1

]2 = 64/9,
[
c1

3

]2 = 64/25,
[
c1

5

]2 = 64/441,
[
c1

7

]2 = 64/2025, (B.1)[
c2

2

]2 = 32/9,
[
c2

4

]2 = π2/2,
[
c2

6

]2 = 32/25, (B.2)

[
c1

3

]2 = 576/1225,
[
c3

3

]2 = 64/81,
[
c3

5

]2 = 576/121,
[
c3

7

]2 = 576/169.

(B.3)

In the first of formulae (27), there is the factor

k
y
ν (Lx) + k

y
μ(a)

k
y
μ(a)

= 1 +

√
u2 − π2γ 2ν2

u2 − π2μ2
. (B.4)
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The terms in the sum in formula (30) are proportional to

k
y
μ(a)2 + k

y
ν (Lx)

2

k
y
μ(a)k

y
ν (Lx)

= 2u2 − π2(μ2 + γ 2ν2)√
(u2 − π2μ2)(u2 − π2γ 2ν2)

. (B.5)

We present some relevant squares of the normalization coefficients for γ → 1/2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
N

(1)
1

]2 = 2
[c1]2

√
(u2−π2)(u2−π2γ 2)

2u2−π2(1+γ 2)
→ 9

32

√
(u2−π2)(u2−π2/4)

2u2−5π2/4 ,[
N

(1)
3

]2 = 2[
c1

3

]2

√
(u2−π2)(u2−9π2γ 2)

2u2−π2(1+9γ 2)
→ 25

32

√
(u2−π2)(u2−9π2/4)

2u2−13π2/4 ,

[
N

(1)

5

]2 = 2[
c1

5

]2

√
(u2−π2)(u2−25π2γ 2)

2u2−π2(1+25γ 2)
→ 441

32

√
(u2−π2)(u2−25π2/4)

2u2−29π2/4 ,

[
N

(1)
7

]2 = 2[
c1

7

]2

√
(u2−π2)(u2−49π2γ 2)

2u2−π2(1+49γ 2)
→ 2025

32

√
(u2−π2)(u2−49π2/4)

2u2−53π2/4 ,

(B.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
N

(2)
2

]2 = 2[
c2

2

]2

√
(u2−4π2)(u2−4π2γ 2)

2u2−4π2(1+γ 2)
→ 9

16

√
(u2−4π2)(u2−π2)

2u2−5π2 ,

[
N

(2)
4

]2 = 2[
c2

4

]2

√
(u2−4π2)(u2−16π2γ 2)

2u2−4π2(1+4γ 2)
→ 4

π2 ,

[
N

(2)
6

]2 = 2[
c2

6

]2

√
(u2−4π2)(u2−36π2γ 2)

2u2−4π2(1+9γ 2)
→ 25

16

√
(u2−4π2)(u2−9π2)

2u2−13π2 ,

(B.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
N

(3)
1

]2 = 2
[[

c1
1

]2 2u2−π2(1+γ 2)√
(u2−π2)(u2−π2γ 2)

+
[
c3

1

]2 2u2−π2(9+γ 2)√
(u2−9π2)(u2−π2γ 2)

]−1

→
√

u2−π2/4
32

[
1
9

2u2−5π2/4√
u2−π2 + 9

1225
2u2−13π2/4√

u2−9π2

]−1
,[

N
(3)
3

]2 = 2
[[

c1
3

]2 2u2−π2(1+9γ 2)√
(u2−π2)(u2−9π2γ 2)

+
[
c3

3

]2 2u2−9π2(1+γ 2)√
(u2−9π2)(u2−9π2γ 2)

]−1

→
√

u2−9π2/4
32

[
1

25
2u2−13π2/4√

u2−π2 + 1
81

2u2−45π2/4√
u2−9π2

]−1
,[

N
(3)

5

]2 = 2
[[

c1
5

]2 2u2−π2(1+25γ 2)√
(u2−π2)(u2−25π2γ 2)

+
[
c3

5

]2 2u2−π2(9+25γ 2)√
(u2−9π2)(u2−25π2γ 2)

]−1

→
√

u2−25π2/4
32

[
1

441
2u2−29π2/4√

u2−π2 + 9
121

2u2−61π2/4√
u2−9π2

]−1
,[

N
(3)
7 ]2 = 2

[[
c1

7

]2 2u2−π2(1+49γ 2)√
(u2−π2)(u2−49π2γ 2)

+
[
c3

7

]2 2u2−π2(9+49γ 2)√
(u2−9π2)(u2−49π2γ 2)

]−1

→
√

u2−49π2/4
32

[
1

2025
2u2−53π2/4√

u2−π2 + 9
169

2u2−85π2/4√
u2−9π2

]−1
.

(B.8)

Let us now present two final expressions. First, we present the dependence of
∣∣t1

1

∣∣2 on u
for γ → 1/2

∣∣t1
1

∣∣2 =
[
N

(1)
1

]2[
c1

1

]2

4

(
k

y

1 (a) + k
y

1 (Lx)

k
y

1 (a)

)2

→ 1

2

√
u2 − π2/4(

√
u2 − π2/4 +

√
u2 − π2)2

√
u2 − π2(2u2 − 5π2/4)

.

(B.9)

Clearly, the function
∣∣t1

1

∣∣2 behaves as ∼1/
√

u2 − π2 if u goes to π from the right. This is the
behaviour at the edge of the first step shown in figure 3. Second,
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∣∣t1
3

∣∣2 =
[
N

(1)
3

]2[
c1

3

]2

4

(
k

y

1 (a) + k
y

3 (Lx)

k
y

1 (a)

)2

→ 1

2
√

u2 − π2

[√
u2 − π2/4

(
√

u2 − π2/4 +
√

u2 − π2)2

2u2 − 5π2/4

+
√

u2 − 9π2/4
(
√

u2 − π2 +
√

u2 − 9π2/4)2

2u2 − 13π2/4

]
. (B.10)

This expression manifests the behaviour of the function |t1
3 |2 of the type ∼(const +√

u2 − 9π2/4) if u goes to 3π/2 from the right, i.e. the behaviour at the jag of the first
conductance step in figure 3.
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